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A B S T R A C T

This study was devoted to introducing a new method for a priori prediction of aspiration pressure buildup in
closed coupled atomization (CCA) nozzles. There have been considerable controversies about increasing or
decreasing the aspiration pressure for a reliable operation of CCA nozzles, mainly because of the complex nature
of CCA process. Here for the first time, we applied an artificial neural network (ANN) based machine learning
algorithm for the prediction of aspiration pressure in close-coupled HPGA nozzles. An analytical model equation
was obtained based on the largest experimental dataset from the literature and proved to be useful for prediction
of non-dimensionalized aspiration pressure with R2 of 0.98. But, its prediction accuracy of absolute aspiration
pressures was degraded with a decrease of R2 score to 0.73 and an average prediction error of 17 %, mainly due
to the limitation of literature data. Based on parametric study and a sensitivity test, protrusion length of CCA
nozzles and Re number were found to be relatively significant as compared to the apex angles. Finally, we
provided a comprehensive contour map to facilitate the conceptual design and operation of CCA nozzles to
minimize the aspiration pressure.

1. Introduction

Close-coupled atomization (CCA) of a molten metal is the preferred
choice for producing fine powders (< 20 μm) and provides improved
efficiency in the powder manufacturing industries [1]. The atomization
process requires a high level of gas-to-melt momentum transfer to
strengthen primary and secondary breakup of the melt before the melt
droplets are solidified [2,3]. Hence, a large number of previous studies
have concentrated on elucidating the mutual interaction of supersonic
gas streams and droplets of metal melt, when altering the design and
operation parameters of nozzles. These parameters include such as the
protrusion length and apex angle of a melt feeding tube, as well as
injection pressure and physical properties of the gas, and the gas-to-
melt ratio (GMR) [4–17]. In fact, many of the previous studies have
been driven toward producing smaller metal powder by developing
their own designs of CCA nozzles, but modern CCA technology seems to
have reached a limit for producing sub-10 μm powder and to face a new
practical challenge of stable operation of the nozzles as well.
In our opinion, an aspiration pressure, that is developed at the melt-

tube tip of CCA nozzles by the back flow of gas, lies in the middle of the
stable operation issue. There has been considerable discussion of the
possible roles of aspiration pressure in the size of metal powder and the
stability issue of CCA process. Increasing the aspiration pressure above

the ambient pressure reduces the melt flow rate so that increases the
GMR, and at the same time it can push the melt to form a sheet at the
edge of melt tube, activating the popular melt sheet mode [18]. Al-
though these actions of aspiration pressure are all beneficial for redu-
cing the powder size, a high aspiration pressure is not always re-
commended. When aspiration pressure sometimes becomes
unexpectedly large or fluctuated by any means, it can directly impede
the flow of melt through the tube, or cause intermittent pause of the
flow, which results in freezing of the melt inside the melt tube. Another
concern is that a high positive (over-ambient) aspiration pressure, if not
precisely controlled, can push the melt sheet further beyond the edge,
which might lead to an early gas flow separation [9,10,18,21,19] and
lick back phenomena [21,19] of melt on the outer wall of the melt tube.
Conversely, when it comes to lowering the aspiration pressure, a

negative (sub-ambient) aspiration pressure may create a suction around
the melt tube tip that will help to make the melt flow smooth and at-
tract the mainstream of gas on to the outer wall of melt tube to mini-
mize the gas separation as well [4,12,15,21,19]. Since such a low as-
piration pressure seems to be more advantageous at least for the
stability issue of CCA nozzles, we would like to introduce our metho-
dology and outcomes toward that direction from now on.
The problem is that the aspiration pressure is not easy to predict

until the nozzle design is determined. This is because the aspiration
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pressure is created in response to supersonic flow fields, which means
that all the aforementioned parameters are involved in determination of
the pressure. Moreover, it is not possible to measure the aspiration
pressure in reality in which metal melt is injecting into the gas through
its delivery tube. [10] In fact, all the literature data of aspiration
pressure were obtained in the absence of melt flow. Upon injection of
melt, the real gas pressure at the center of melt tube tip might be
considerably different from the aspiration pressure [1]. As such, despite
those existing controversies and limitations, understanding the aspira-
tion pressure buildup in connection with wake structures has long been
an attractive subject of researches.
Ting et al. [1] observed a sudden change of aspiration pressure

when the gas-injection pressure (P) varied around a critical value,
known as “the wake-closure pressure” (WCP), particularly from con-
vergent-type of CCA nozzles. When P<WCP, the recirculation (wake)
zone is shaped like an hour-glass of which the downstream end is open.
Thus, this type of recirculation zone is called “open wake”. When P
increases and approximates the WCP, the stronger gas stream impacts
the melt flow so that it squeezes the neck of the hour-glass wake more.
When P slightly exceeds the WCP, the neck is apparently cut off and the
wake appears closed with a sharp end.
Compared to the open-wake condition, the recirculation zone be-

comes shortened in length and its strength noticeably weakened under
this closed-wake condition (P>WCP) [1,18,19,20]. This leads to a
sudden reduction of the aspiration pressure to less than the ambient
pressure in response to the mass change of gas entering the recircula-
tion zone [1,19,20]. On the other hand, holding the injection pressure
(P) high is not always recommended because it can create a strong
Mach disk at the truncated end of the wake zone, followed by a series of
shock waves. This is detrimental to effective gas-momentum transfer to
the melt. It is therefore important to determine the range of allowable
gas injection (or aspiration) pressures relevant to particular nozzle
configurations. In contrast to the convergent CCA nozzles [13,19,20],
convergent-divergent (C–D) CCA nozzles [9,10,16] help the gas to be
fully expanded through the nozzle, so that such a Mach disk is not ty-
pically observed.
Ridder et al. [20,21] reported that the aspiration pressure first rises

to a peak and then falls while the injection pressure steadily increases.
Such a volcano-shaped response of the aspiration pressure was similarly
observed regardless of gas types (i.e., with He, N2, and Ar) although

there was a slight difference in degree. Moreover, much experimental
works [9,10,12,13,16] suggested that high injection pressures of gas
used to be helpful to reduce the aspiration pressure below the ambient
pressure, whereas at relatively low pressures, a longer protrusion length
of the melt tube sometimes create a positive (over-ambient) peak of
aspiration pressure for both types of CCA nozzles. Cui et al. [4] and
Zhao et al. [16] found that the aspiration pressure increases with in-
crease of the apex angle of an C–D CCA nozzle.
Despite the large number of previous studies, there is no analytical

model capable of a priori prediction of the aspiration pressure directly
from the design parameters and process parameters. The reason might
be the fact that there are too many factors involved to derive a single
model equation. In order to circumvent this technical challenge, we
first used Buckingham’s Π theorem [22] to reduce the number of
parameters of interest and then applied a machine learning approach
using an artificial neural network (ANN) with experimental datasets
from the literature. As a result, an analytical model equation was ob-
tained and further validated with an extra dataset. Sensitivity analysis
was also conducted to extract two most significant (dimensionlesss)
parameters affecting the aspiration pressure, which result was also
supported with a comprehensive computational fluid dynamic (CFD)
analysis. Based on these results, we finally proposed a contour map
relating the aspiration pressure to the significant parameters.

2. Theory and methodology

2.1. Non-dimensionalized functional relation between aspiration pressure
and systematic parameters

Aspiration pressure (Pasp) is affected by various process parameters
such as injection pressure (P), mass flow rate (Q), density (ρ), and
viscosity (μ) of gas, as well as by nozzle design parameters such as
protrusion length (H), melt tube diameter (D), and the apex angles of jet
and nozzle (α and β). [4–17] Most of the parameters are graphically
illustrated in the inset of Fig. 1.
The relation can be expressed by

Pasp = g (α, β, H, D, P, Q, ρ,μ) (1)

To reduce the number of variables involved in the relation,
Buckingham’s Π theorem [22,23] was used to convert Eq. (1) to a

Fig. 1. Schematic of the artificial neural network (ANN) utilized in the present study with detailed illustrations of the function of the hidden layers and, of the gas
flow and nozzle design parameters.
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dimensionless form and thereby to simplify the analysis further. We
have eight variables with three physical dimensions of mass (M), length
(L), and time (T).
Applying the Π theorem to the dimensional variables with three

repeating variables of P, D, and ρ, Eq. (1) is now expressed in a di-
mensionless form with five dimensionless variables (Π1, Π2, …, Π5) as:

=P P Re/ f ( , , H/D, )asp (2)

where Pasp /P corresponds to the target variable Π1, α and β in radians
become Π2 and Π3, H/D corresponding to Π4 measures the effect of a
protrusion length H, and the last Π5 represents the Reynolds number
defined by Re= 4Q/(π Deff μ). Here, Deff is an area equivalent diameter
of the nozzle throat that can be calculated from the area (A) of the
nozzle throat by =D A(4 / )eff

1/2. In order to identify the functional
form of f in Eq. (2), an artificial neural network (ANN) was applied
using a wide range of experimental data collected from the literature
[9,10,13,16].

2.2. Basic structure, function, and implementation of an artificial neural
network

Fig. 1 shows a schematic of an artificial neural network, which is an
interconnected group of nodes called artificial neurons, akin to the vast
network of neurons in human brains [24]. Typically, artificial neurons
such as those depicted in circles in Fig. 1 are aggregated into three
different layers: input, hidden, and output, [25] depending on their
tasks. Signals received from external inputs (corresponding to Π2 - Π5 in
this study) are first stored in the nodes (x1 to x4) in the input layer, and
then processed to be transmitted to each of the nodes in the hidden
layer. These are finally transmitted to an output neuron (corresponding
to Π1) in the output layer. As illustrated in Fig. 1, the four hidden
neurons connecting the input neurons and the output neuron play a key

function by determining the accuracy of the ANN analysis.
When the four input neurons are designated xi (indexed with i= 1,

2, 3, 4), the four hidden neurons are designated hj with j= 1–4, and the
only output neuron is designated ok with k = 1. The connections be-
tween the input and hidden layers (depicted with arrows in Fig. 1 and
often called “edges”) typically have a weight factor (wij) per pair that is
adjusted during the training process to measure the strength of a signal
at the connection. In this study, each of the connections between the
hidden and output layers are evaluated by wjk.
The boxed inset of Fig. 1 depicts the function of the hidden layer. A

neuron in the hidden layer takes a sum of the signals from four input
neurons with weights to calculate “activation” as = +=a w x cj i ij i j1

4

where cj is a bias. Next, this activation at each hidden neuron is treated
using a sigmoid function [26] as = +z a2/(1 exp( 2 )) 1j i , which is
then subject to an internal screening with threshold θj. Finally, an
output signal ok is calculated through a similar weighted summation as

= +=o w z dk j jk j k1
4 (where dk is an additional bias) and then is trans-

mitted to the output neuron.
Starting with initialized weights and biases, the Levenberg-

Marquardt (LM) backpropagation algorithm is run to calculate a total
squared error between the resulting output of the ANN and the target
(experimental) output, to iteratively adjust the weights and biases in a
gradient-descent direction of the error, and finally to minimize the
prediction error [27]. Note that the final set of weights and biases that
perform the best for the target dataset used does not necessarily work
for other unexperienced datasets. Thus, an ANN being trained likewise
is generally crosschecked using two additional processes: validation and
test steps [28]. Also note that a large number of data are generally
required to prevent “overfitting” of the ANN [29].
With this in mind, we collected two hundred data (206 in total)

from four different experiments, [9,10,13,16], which makes it the lar-
gest dataset about close-coupled gas atomization nozzles to our
knowledge. All the required parameters are provided as a table in
Supplementary data. The entire dataset was split into three groups: 80
% for ANN training, 10 % for validation, and 10 % for the final test of
the ANN. Data was randomly selected and assigned to each group. The
training dataset was used to build multiple algorithms by adjusting
different combinations of weights and biases with the training datasets.
The validation dataset was used to compare the performance of these
prediction algorithms and to choose the algorithm with the best per-
formance. Finally, the test dataset was used to measure the performance
of this algorithm [30]. This data assignment and ANN process were
repeated until the corresponding outcomes had the minimum error.
After confirmation in the test step, the network weights and biases were
determined to build the final model equation estimating the output
(aspiration pressure) from systematic input parameters. A MATLAB-
based code was developed to implement the foregoing ANN analysis for
the entire dataset [31]. For reference, details of set-up parameters for
running this ANN training are available in Appendix A.
Table 1 describes a diversity of experimental conditions that we

considered in terms of nozzle types, gas properties, operation condi-
tions, and nozzle design parameters from the literatures. Based on the
experimental conditions, the four input Πs (s = 2, 3, 4, 5) as well as the
output Π1 were calculated as defined in Eq. (2), and some of them are
classified into the three different groups for further parametric (sensi-
tivity) studies as listed in Appendix B; where Tables B1 and B2 re-
present the first and second dataset grouped regarding change of the
gas apex angle (α) and nozzle apex angle (β), respectively, while Table
B3 shows the third data group combining the dimensionless protrusion
length ( = H D/ )4 and Re number.
Note that the values of Πs often differ by orders of magnitude in

Tables B1–B3 of Appendix B. For example, the values of Re are always
one million-times larger in magnitude than other Π variables. This may
hinder proper evaluation of each parameter (Π) because the ANN
analysis process could be overwhelmed by the largest input parameter
[32]. To avoid this problem, all of the input and output Πs were

Table 1
Diversity of experimental data used for training ANN.

a) Gas properties

Gas species Dynamic viscosity
μ (kg/m∙s)

Argon (Ar) 2.13 × 10−5

Nitrogen (N2) 1.72 × 10−5

b) Process parameters

Injection Pressure
P (atm)

Gas Flowrate
Q (kg/s)

Reference

16 - 55 0.22−0.67* [13]
9.87 - 34.54 1.3 × 10−2 - 4.3 × 10−2 [9]
9.96 - 31.58 2.7 × 10−2 - 8.5 × 10−2 [10]
3.53 - 40.56 5 × 10−4 - 5 × 10-3** [16]

c) Nozzle types and design parameters

Nozzle type Protrusion
Length,
H (mm)

Jet apex
angle
α (deg)

Nozzle
apex
angle
β (deg)

Melt tube
diameter
D (mm)

Reference

Discrete jet
Conv.

2.24–12 45 45 10.41–21.34 [13]

Discrete jet
C–D

5–15 25 25 3.00 [9]

Annular slit
C–D

5 26 46 3.00 [10]

Annular slit
C–D

10–14 16–28 22–26 1.20 [16]

* Flow rates were used from similar nozzle and gas study [48].
** Both the throat area and flow rates were used from similar nozzle study

[49].
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normalized to vary in the range -1 to 1 by Eq. (3):

=x x x x x2 ( )/( ) 1min max min (3)

where x= original data, x = normalized x, xmax=maximum value of
x, xmin = minimum value of x. This normalization is known to be ef-
fective for shortening the learning time and improving the accuracy of
the output results as well [33].
According to previous theoretical work [34], a single hidden layer is

enough to reasonably approximate any function of the ANN, unless the
experimental data under consideration have peculiar discontinuities,
such as a sawtooth pattern. Because no discontinuities were found from
the present parametric studies, one hidden layer was finally employed.
Next, it is of particular interest to select an appropriate number of
neurons in the hidden layer, because if too few or too many hidden
neurons are selected, this might result in under-fitting or over-fitting of
the data, respectively [35–37]. An optimal number of hidden neurons in
this study was determined on a trial and error basis, in accordance with
the suggestions of previous studies [38,39]. For instance, Fig. 2 shows
the variation of R2 (coefficient of determination) score of ANN pre-
dictions with increasing the number of hidden neurons. Starting from a
single hidden neuron, the R2 score increases rapidly, and undergoes a
little fluctuation before reaching a maximum of ∼0.98 when four
hidden neurons used, and then falls with further increase of the number
of hidden neurons. Fig. 3 shows likewise the variation of mean squared
error (MSE). It is obvious that four hidden neurons are the best choice
denoting the highest R2 score as well as the lowest MSE. More than six
hidden neurons are not desirable because it may cause the overfitting of
ANN or making the prediction equation complicated in addition to the

dissatisfaction with the prediction accuracy. Thus, four neurons were
finally employed in this study.
When it comes to the size of the literature data, another preliminary

study was performed similarly. Figs. 4 and 5 show the variations of R2

score and MSE of ANN predictions with the size of literature data, re-
spectively. The x-axis of the figures denotes what percentage of data has
been used to yield the model equation. For instance, 20 % implies that
41 datasets, i.e., 20 % of the 206 (in total) experimental datasets. The
41 datasets has also been randomly divided into three groups such as 80
%, 10 %, and 10 % of the 41 datasets for the subsequent training, va-
lidation, and test steps, respectively. This process was repeated while
monitoring R2 score and MSE while increasing the size (percentage) of
datasets up to 100 %. Both figures showing opposite trends clearly in-
dicate that 80 % of the 206 datasets are sufficiently large in size en-
suring that R2 ≥ 0.98 and MSE ≤ 0.005.

2.3. Computational fluid dynamics (CFD) simulation

Computational fluid dynamics simulations (CFD) has also been
implemented for understanding features of wake structures in connec-
tion with aspiration pressures around wake closure pressure. The CCA
nozzle we considered is a convergent nozzle [19] for which a com-
mercial code ANSYS Fluent 16 was used under the assumption of the
rotational symmetry of the CCA nozzle. In addition, we considered
argon gas flow only without any melt introduction and modelled it as
an unsteady compressible flow with Reynolds-stress turbulence model
[40]. In order to improve the accuracy and convergence of simulation, a
sufficiently small time step of 10−5 s was used [41]. Once the steady-
state flow field of the gas had been developed, the aspiration pressures
were measured by averaging the static pressures along the melt tube tip

Fig. 2. Variation of coefficient of determination R2 with the number of hidden
neurons.

Fig. 3. Variation of MSE (mean squared error) with the number of hidden
neurons.

Fig. 4. Variation of coefficient of determination R2 with the percentage of data.

Fig. 5. Variation of MSE (Mean squared error) with the percentage of data.
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surface as proposed by [19].

3. ANN analysis results and experimental validation

Fig. 6 shows the regression plots of the final outcomes from the
three successive steps (training, validation, and testing). In Fig. 6, the
solid line representing the best fitting result is almost completely
overlapped by the dashed line indicating the perfect prediction (out-
puts) of the ANN in relation to the experimental data (targets in terms
of the normalized P P/asp ). Note that the R2 values in Fig. 6a–c are always
higher than 0.97 for the training-to-test steps, suggesting that the pre-
sent ANN predictions are quite satisfactory, independent of the ran-
domly grouped data. The final model equation used to estimate the
aspiration pressure was extracted from the ANN training dataset,
written in the non-dimensionalized form in Eq. (4). More details about
the preparation, calculation, and post-treatment process of ANN for the
equation are available in Appendix C

= + + +

+ +

P
P

a a

a a

5.656 2.306/(1 exp( 2 )) 3.212/(1 exp( 2 ))

4.441/(1 exp( 2 )) 5.495/(1 exp( 2 ))

asp
1 2

3 4 (4)

Where

=
+ + × ×

a
Re

(0.253 0.137)/0.520 (0.33 0.18)/0.50
(0.085 0.501)/11.56 (0.125 2.69 10 )/4.2 10
1.380

1 2 3

4
6 7

= +
+ × ×

a
Re

(0.268 0.105)/0.520 (2.32 1.22)/0.50
(0.607 3.56)/11.56 (44.960 9. .87 10 )/4.2 10
24.237

2 2 3

4
8 7

=
+ × ×

+

a
Re

(8.429 4.56)/0.520 (0.781 0.414)/0.50
(1.355 7.98)/11.56 (7.400 1.591 10 )/4.2 10
0.574

3 2 3

4
8 7

=
+ × ×

+

a
Re

(6.841 3.700)/0.520 (0.352 0.198)/0.50
(0.109 0.642)/11.56 (0.031 6.80 10 )/4.2 10
2.607

4 2 3

4
5 7

It should be noted, here, that Eq. (4) returns only the normalized
dimensionless aspiration pressure. Although this model equation seems
to work very well for the entire pretreated data, it does not necessarily
guarantee that this will fit best the raw (absolute) aspiration pressures.
Some unexpected problem can arise from the data handling process.
From a mathematical point of view, Eq. (3) is a sort of linear trans-
formation that does not cause any change in the coefficient of de-
termination (R2). However, taking a close look at the definition of Π1

(P P/asp ), we realized that Pasp and P are both case-specific variables so
that taking their ratio helps to mitigate their case sensitivities and re-
vealed their universal nature in Fig. 6. Conversely, this implies that the
data scatteredness would be more prominent in a graph plotting the
raw dimensional data (Pasp). Fig. 7 presents ANN predictions of Pasp
against the corresponding experimental data. As expected, the equation
is still reasonably monitoring the Pasp, while its prediction accuracy
becomes apparently degraded with a decrease of R2 to 0.73; and an
average (relative) prediction error of 17 % (corresponding to MSE of
0.017).
Another reason might be originated from the fact that the dataset

involves both types (convergent vs C–D) of CCA nozzles. It is notable
that a convergent nozzle and an equivalent C–D nozzle often exhibit
different expansion behaviors of gas so that creating a remarkable
difference in Pasp between them. A simple way to circumvent this issue
is to divide the whole dataset into two groups depending on their nozzle
types and to obtain a model equation for each. However, we could not,
because the size (206) of dataset is not big enough to divide. The

Fig. 6. Regression analysis for the neural network responses: a) Training data,
b) Validation data, and c) Test data.
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overfitting issue is always raised when number of data points per
parameter is small. In our study, the number was about 3.6 points per
parameter even for the entire dataset. This is why we had to treat the
data as a whole, leading the ANN to find a suboptimal result though is
not perfect.
To validate the model equation further in terms of Pasp, we con-

sidered an extra experimental dataset for an annular slit convergent
CCA nozzle [19]. Although this data had never been used in the fore-
going ANN process (the training, validation, and test steps), Fig. 8 may
correspond to the best example. On average, we would like to conclude
that our model equation can make a reasonable prediction of aspiration
pressure regardless of nozzle types, and relatively well reproduce the
trend of the pressure as long as design and operation parameters lie in
the ranges specified in Table 1. It is anticipated that the prediction
accuracy of the model will increase as more data are accumulated, or
we will be able to provide two sets of model equations for each type of
CCA nozzles.

4. Sensitivity analysis of the dimensionless parameters and design
guidelines for nozzles

While the present model equation is easy to use for a priori pre-
diction of aspiration pressure, as shown in Section 3, it is difficult to
extract any functional relation of Pasp in relation to other systematic
parameters because the multiple parameters in Eq. (4) are complexly
interrelated. One might need to reduce the number of systematic
parameters in order to gain an insight into stable operation of the
nozzles without concern for the aspiration pressure. For this purpose,

we attempted three distinct parametric studies for the three groups of
subset data sampled as described in Section 2.2.
First, we focused on the two apex angles Π2 and Π3 because these

parameters are often reported as significant parameters, but con-
ditionally [4,16]. A large apex angle is usually preferred for the pro-
duction of smaller powders because it strengthens the gas-to-melt mo-
mentum transfer and decreases melt flow rates by increasing aspiration
pressure, which turns out to be beneficial for producing finer powder
[18]. However, too large apex angles sometimes increase the aspiration
pressure so high that can eventually cause to block the melt flow [42].
This suggests that there exists a certain safe range of apex angles in
view of stability within which the aspiration pressure buildup is sup-
pressed and an optimal apex angle that might be the maximum value in
the allowable range.
Based on the data in Tables B1 and B2 of Appendix B, we visualized

the effect of the two apex angles (α and β) on the dimensionless as-
piration pressure (Π1) in Figs. 9 and 10, respectively. As a result, we
observed that the aspiration pressure tends to increase exponentially
with increase of the apex angle in both figures, when Re is larger than 3
× 106. It was also noted that the aspiration pressure does not vary
significantly when α or β ≤ 0.4 (22.5°) as if this apex angle is in the
aforementioned safe range. Here, the angle of 22.5° seems to be the
maximum allowable apex angle. Out of this range (see Table 1), both
apex angles may make more significant influence on the aspiration
pressure as consistent with literatures [4,16].
Table B3 and Fig. 11 show combined effects of tip protrusion length

and Re as well as the kind of high-pressure gas used, respectively. For
instance, the effect of apex angles again can be illustrated by the three
symbols from the bottom of the figure legend (right triangle, filled

Fig. 7. Regression analysis for the ANN predictions of absolute aspiration
pressure (Pasp) with respect to the experimental data.

Fig. 8. Validation of the present model by experiment [20].

Fig. 9. Effect of the jet apex angle α on the dimensionless aspiration pressure
Π1.

Fig. 10. Effect of the nozzle apex angle β on the dimensionless aspiration
pressure Π1.
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circle, and triangle), whereas the effect of H/D is presented by the top
two symbols (square and hollow circle). As for the apex angles, the
figure shows that the Π1 seems to be determined solely by Re number
while the angle varies from 0.34 to 0.49 (around 22.5°), suggesting that
the apex angles do not make a remarkable impact under this condition.
On the other hand, when H/D increases at a fixed apex angle of ∼45°,
the two profiles denote a remarkable discrepancy. Thus, this seems to
derive a conclusion that the protrusion length is a more influential
parameter than the apex angle. However, we also have to say that this
conclusion might be hasty because the dataset in Table B3 is not
complete.
A sensitivity analysis using the elimination method [43] was con-

ducted to allow quantitative evaluation of all the parameters and to
extract the two most significant parameters. First, one parameter se-
lected from among the four input parameters (Π2, Π3, Π4, Re) was
eliminated, and then the ANN process was performed on the remaining
parameters to obtain a new model equation. Its prediction performance
was compared with the original model obtained with all the input
parameters, in terms of the coefficient of determination (R2) and mean
square error (MSE). If the eliminated parameter is critical to the de-
termination of the aspiration pressure, the resulting new model will
yield a relatively larger mean square error (MSE) and a smaller R2 score
due to the absence of the parameter.
Table 2 summarizes the results of this sensitivity analysis. Compared

to the apex angles (Π2 and Π3), both Π4 (= H/D) and Re, when
eliminated, obviously brought about more significant degradation of
the prediction performance of the model equation. It is thus concluded
that the apex angles are relatively not significant parameters on as-
piration pressure, as compared with Π4 and Re.
For better understanding of the strong dependency of aspiration

pressure on Π4 and Re, CFD simulations were conducted. We considered
two extreme cases of Π4 (0.74 vs 10.04) at two different values of Re
(6.81 × 105 and 2.33 × 107) while the apex angles remained constant
at 0.7 (∼40°). In Fig. 12, the velocity vectors were plotted with dif-
ferent colors corresponding to pressures in the range 0.074−2 atm. The
CFD simulation results clearly demonstrated that the factors H/D and
Re significantly alter the flow patterns and local pressure distributions

around the tip of the melt tube.
Fig. 12a shows that, for a short melt tube with small H/D of 0.74,

after the main stream of gas is detached from the side wall of the melt
tube, it forms a relatively short recirculation zone at a small Re of 6.81
× 105. When Re is increased to 2.33 × 107 by increasing the gas in-
jection pressure P, the recirculation zone elongates to form an hourglass
shape with an open end, consistent with the Schlieren imaging results
[18]. This suggests that this case remains an open-wake condition in
which the Pasp responds “in inverse proportion” to P (recall the ob-
servation of Ting et al. [1] in Introduction and the behavior in Fig. 3).
This also explains why Pasp decreases from 1.13 atm to 0.35 atm with
increase in Re or P. It is notable that the gas flow inside the recirculation
zone seems to straighten directionally toward downstream at high Re,
which limits the amount of gas returning to the melt tube tip, and de-
creases the Pasp.
Fig. 12b shows the flow fields at low and high Re numbers for a long

melt tube of H/D= 10.06. The gas flow seems to be stronger compared
to the case of a short melt tube, as if the gas flow is guided by the longer
side-wall of the melt tube. At a low Re number, the main gas stream
exhibits a more obvious pulsating pattern along the melt tube, resulting
in a bit higher aspiration pressure of 1.29 atm. At a high Re number, the
gas expands more directionally with the guidance of the melt tube so
that it forms a stronger, muscle-like flow structure surrounding the melt
tube. One might notice that at the tiny tip of the melt tube is created a
very small (primary) recirculation zone ending in a Mach disk. Even
though a secondary recirculation zone developed downstream of the
Mach disk, it hardly affected the upstream pressure Pasp at the tip of the
melt tube due to the resistance of the Mach disk. This resulted in a low
aspiration pressure of 0.29 atm.
Finally, we attempted to create a guideline for the design and op-

eration of annular plug nozzles without concern for the aspiration
pressure. Recalling the conclusion of the sensitivity test, a contour map
of Pasp was plotted against Π4 and Re with a fixed apex angle (α and β)
at 22.5°, as seen in Fig. 13. The red and dark-blue regions in the figure
represent the maximum and minimum values of Pasp, respectively. As
described in Introduction, there has been two competing aspects of
aspiration pressure. Nevertheless, it should be noted that this guideline
was made to direct toward lowering the aspiration pressure and could
be differed if high apex angles are taken into account.
In Fig. 13, the over- and sub-ambient regions are separated with a

dotted line. In other words, the dark blue region outside the dotted
quadrant represents a sub-ambient pressure zone for Pasp<1 atm,
whereas it is advised that the conditions represented by the inside of the
quadrant should be avoided. It is graphically obvious that any value of
protrusion length (H) can be used when Re>106; however, CCA noz-
zles with a long melt tube should be used with care under low-Re
conditions. Particularly when Re<106, a relatively short melt tube
such as H/D<7 is recommended to handle the stability issue, as in-
dicated by a horizontal arrow in the figure. Similarly, if a long melt-
tube nozzle must be used, higher-Re operation of the nozzle should be
taken into account (see the vertical arrow).
While the contour map offers conceptual insight for reliable design

and operation of close-coupled nozzles, the result should be used for
nozzles with a fixed apex angle of 22.5°. However, we would like to
note that the applicability of Fig. 13 can be readily extended by re-
peating the calculation of Eq. (4) for another apex angle. It should also
be noted that operation expenses need to be considered in connection
with performance, such as the preferred size and uniformity of the
powder particles, prior to selecting optimal values for Re and H/D.

5. Conclusions

In this study, we developed an ANN-based methodology for a priori
prediction of the aspiration pressure of close-coupled HPGA nozzles.
The largest size of experimental data (206 in total) was used for the
training, validating, and testing steps of the ANN. Based on the

Fig. 11. Effects of Re number and apex angle on the dimensionless aspiration
pressure Π1.

Table 2
Sensitivity analysis for dimensionless aspiration pressure.

No. Model Eliminated input parameter R2 MSE

1. Model 1 N/A 0.98 1.48 × 10−3

2. Model 2 Π3 0.92 3.04 × 10−3

3. Model 3 Π3 0.90 8.88 × 10−3

4. Model 4 Π4 0.82 2.23 × 10−2

5. Model 5 Re 0.078 1.18 × 10−1
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Fig. 12. Vector plot of gas velocity overlaid with a pressure contour for a) Π4= 0.74 and Re= 6.81 × 105 and 2.33 × 107, b) Π4 = 10.06 and Re= 6.81 × 105 and
2.33 × 107.
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preliminary tests, the present ANN was designed to include one input,
one output, and one hidden layers. The LM back-propagation algorithm
was finally employed for best training of the ANN. As a result, we ob-
tained a new analytical model equation in a dimensionless form which
is capable of nicely predicting the aspiration pressure over a wide range
of gas and nozzle-design parameters, with a high coefficient of de-

termination of R2 = 0.98 and a low MSE of 1.48 × 10−3. However, the
prediction accuracy for absolute aspiration pressures becomes con-
siderably degraded with a decrease of R2 score to 0.73 and an average
relative prediction error of 17 %. The model equation was further va-
lidated using an experimental dataset that had never been used in any
of the previous steps. A sensitivity test was performed and revealed that
H/D and Re are apparently more significant than the apex angles.
Finally, a contour map of the aspiration pressure prepared as a function
of H/D and Re suggested that any protrusion length of melt tubes can be
used at high Re numbers while short melt tubes are recommended for
lowering the aspiration pressure in case of low apex angles. However,
this result should be accepted to have clear limitations arising from
insufficient size of literature data.
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Appendix A. Details of set-up parameters for running ANN

where mu is the control parameter for the algorithm used to train the neural network.

Appendix B. Sub-data groups for parametric studies

Fig. 13. Contour plot of Pasp as a function of Π4 and Re.

ANN training parameters

Maximum number of epochs to train 5000
Maximum validation failures 20
Learning rate 0.01
Performance goal 0.00
Minimum gradient 1 × 10−10

Initial mu (damping factor) 1
mu decrease factor 0.8
mu increase factor 1.5

Table B1
The first data group of dimensionless parameters sampled from literature datasets aiming at parametric study for the effect of the gas apex α.

Re Π2 Π3 Π4 Π1 Re Π2 Π3 Π4 Π1

1.87E+06 0.28 0.28 0.83 3.43E-01 2.48E+06 0.28 0.28 0.83 2.63E-02
0.35 0.35 0.83 4.65E-01 0.35 0.35 0.83 1.56E-02
0.42 0.42 0.83 3.14E-01 0.42 0.42 0.83 1.79E-02
0.49 0.49 0.83 3.10E-01 0.49 0.49 0.83 1.90E-02

3.10E+06 0.28 0.28 0.83 8.88E-03 3.73E+06 0.28 0.28 0.83 1.20E-02
0.35 0.35 0.83 1.67E-02 0.35 0.35 0.83 1.36E-02
0.42 0.42 0.83 1.80E-02 0.42 0.42 0.83 1.68E-02
0.49 0.49 0.83 1.98E-02 0.49 0.49 0.83 2.43E-02

5.00E+06 0.28 0.28 0.83 8.17E-03
0.35 0.35 0.83 8.97E-03
0.42 0.42 0.83 1.72E-02
0.49 0.49 0.83 2.64E-02
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Appendix C. Aspiration pressure prediction equation by ANN

1. st step: Normalization of inputs and outputs

Before the training process, both the inputs and outputs were normalized in the range [-1,1] by Eq. 3.

2. nd step: Training of the ANN to obtain the best set of weights and biases

After successful training, MATLAB provided the set of weights and biases for the best prediction of output signal. The best result was summarized
in the table below. Recall that the two indices, i and j, indicate the ith input and jth hidden neuron as illustrated in Fig. 1. Thus, the weight wij could
be said to evaluate the significance of the i–j connection.

Table B3
The third data group of dimensionless parameters sampled from literature datasets aiming at parametric study for the effects of the protrusion length of nozzle Π4=
H/D and Re number.

Π2 Π3 Π4 Re Π1 Π2 Π3 Π4 Re Π1

0.79 0.79 0.10 7.70E+06 1.64E-01 0.34 0.34 8.33 6.27E+05 1.73E-01
0.79 0.79 0.10 1.02E+07 1.34E-01 0.34 0.34 8.33 1.24E+06 4.43E-02
0.79 0.79 0.10 1.13E+07 1.14E-01 0.34 0.34 8.33 1.85E+06 4.65E-02
0.79 0.79 0.10 1.28E+07 9.81E-02 0.34 0.34 8.33 2.53E+06 1.56E-02
0.79 0.79 0.10 1.41E+07 8.64E-02 0.34 0.34 8.33 3.13E+06 1.67E-02
0.79 0.79 0.10 1.84E+07 5.86E-02 0.34 0.34 8.33 3.76E+06 1.36E-02
0.79 0.79 0.10 1.98E+07 5.30E-02 0.34 0.34 8.33 4.39E+06 8.81E-03
0.79 0.79 0.10 2.12E+07 4.87E-02 0.34 0.34 8.33 5.06E+06 8.97E-03
0.79 0.79 0.10 2.27E+07 4.28E-02 0.34 0.34 8.33 5.70E+06 9.38E-03
0.79 0.79 0.10 2.41E+07 3.66E-02 0.34 0.34 8.33 6.36E+06 8.00E-03
0.79 0.79 0.21 2.93E+07 6.19E-02 0.41 0.41 8.33 6.48E+05 1.42E-01
0.79 0.79 0.21 3.27E+07 5.52E-02 0.41 0.41 8.33 1.33E+06 5.72E-02
0.79 0.79 0.21 3.80E+07 4.67E-02 0.41 0.41 8.33 1.99E+06 3.14E-02
0.79 0.79 0.21 4.51E+07 3.59E-02 0.41 0.41 8.33 2.68E+06 1.79E-02
0.79 0.79 0.21 4.88E+07 3.08E-02 0.41 0.41 8.33 3.36E+06 1.80E-02
0.79 0.79 0.21 5.01E+07 2.90E-02 0.41 0.41 8.33 4.01E+06 1.68E-02
0.79 0.79 0.21 6.16E+07 2.17E-02 0.41 0.41 8.33 4.62E+06 1.53E-02
0.79 0.79 0.21 6.47E+07 2.01E-02 0.41 0.41 8.33 5.32E+06 1.72E-02
0.79 0.79 0.21 6.81E+07 1.52E-02 0.41 0.41 8.33 5.97E+06 1.84E-02
0.79 0.79 0.21 6.90E+07 1.52E-02 0.41 0.41 8.33 6.58E+06 1.66E-02
0.43 0.43 5.00 3.47E+05 1.01E-01 0.49 0.49 8.33 6.22E+05 1.58E-01
0.43 0.43 5.00 5.01E+05 6.80E-02 0.49 0.49 8.33 1.29E+06 7.51E-02
0.43 0.43 5.00 6.43E+05 5.06E-02 0.49 0.49 8.33 1.94E+06 3.10E-02
0.43 0.43 5.00 8.95E+05 4.02E-02 0.49 0.49 8.33 2.61E+06 1.90E-02
0.43 0.43 5.00 1.15E+06 2.82E-02 0.49 0.49 8.33 3.29E+06 1.98E-02

0.49 0.49 8.33 3,988,900 2.43E-02
0.49 0.49 8.33 4,650,600 2.88E-02
0.49 0.49 8.33 5,350,300 2.64E-02
0.49 0.49 8.33 5,966,200 2.28E-02

Table B2
The second data group of dimensionless parameters sampled from literature datasets aiming at parametric study for the effect of the gas apex β.

Re Π2 Π3 Π4 Π1 Re Π2 Π3 Π4 Π1

3.35E+06 0.42 0.39 3.80 1.46E-02 5.33E+06 0.42 0.39 3.56 1.01E-02
0.42 0.42 3.80 1.68E-02 0.42 0.42 3.56 1.30E-02
0.42 0.51 3.80 2.42E-02 0.42 0.51 3.56 2.25E-02

4.01E+06 0.42 0.39 3.67 1.21E-02 6.00E+06 0.42 0.39 3.47 8.40E-03
0.42 0.42 3.67 1.47E-02 0.42 0.42 3.47 1.16E-02
0.42 0.51 3.67 2.31E-02 0.42 0.51 3.47 2.22E-02

4.63E+06 0.42 0.39 3.67 1.21E-02 6.68E+06 0.42 0.39 3.47 8.40E-03
0.42 0.42 3.67 1.47E-02 0.42 0.42 3.47 1.16E-02
0.42 0.51 3.67 2.31E-02 0.42 0.51 3.47 2.22E-02
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3. rd step: Calculation of the activations and sigmoid functions

Based on the result of the table above, four activations (aj) were calculated from the four input neurons with the weights wij and biases cj. Next
step is to sequentially calculate the sigmoid functions (zj). Refer to Section 2.2 for the mathematical expressions of the activation and sigmoid
function.

4. th step: Calculation of output signal

The last equation representing the normalized output signal was expressed as:

= + + + + + +a a a a12.14/(1 exp( 2 )) 16.906/(1 exp( 2 )) 23.374/(1 exp( 2 )) 28.922/1 exp( 2 ) 28.727
¯

1 1 1 1 1

5. th step: De-normalization of the output signal and the final equation for prediction of Pasp

At the 5th step, the normalized output
¯
1 was denormalized inversely using Eq. 3 as:

= × + +o o o o( ) ( 1)/2k max min min
¯

1

= + + + + +a a a a5.656 2.306/(1 exp( 2 )) 3.212/(1 exp( 2 )) 4.441/(1 exp( 2 )) 5.495/(1 exp( 2 ))1 2 3 4

where omax = 0.39 and omin = 5.2 × 10−3. This dimensionless form of equation was sequentially converted to the final equation (Eq. 4) for
prediction of aspiration pressure.

Appendix D. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.cep.2020.107924.
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